University: University of Žilina					
Faculty: Faculty of Mechanical Engineer	ing				
Course ID: 2Y017	Course name: Mechanics of Materials II				
Course obligation: Compulsory Comple	tion: Exam				
Profile course: yes Core course: yes					
Form, extent and method of teaching a	activities:				
Number of classes per week in the	Lectures: 2 classes				
form of lectures, laboratory exercises,	Seminars: 3 classes				
seminars or clinical practice	Lab.exercises: 0 classes				
Methods by which the educational	Present form of education				
activity is delivered					
Applied educational activities and	Lectures:				
methods suitable for achieving	lectures with problem interpretation, definition of basic principles, solution of				
learning outcomes	sample examples, comment on the solution, interactive lectures with				
	discussion, lectures with multimedia support, connection to technical practice				
	Exercises:				
	practical application of the material from the lectures, solving problem tasks				
	with a connection to technical practice, demonstration methods, repetition of				
	learned issues, ongoing written examination, discussion for feedback from				
	students				
	Students have the possibility of individual consultations with all teachers of this				
	subject.				
Number of credits: 6					
Study workload: 130 hours;					
Recommended semester/term of stud	y: winter, 1. year				
Study degree: 2					
Required subsidiary courses:					
Prerequisites:					
Co-requisites:					

Course requirements:

Continuous assessment / evaluation:

active participation in exercises, control test during the semester, respectively. semestral project.

Final assessment /evaluation:

Evaluation of activities and work during the semester based on the evaluation of the instructor (40% = 40 points) + evaluation on the exam - theoretical and practical part (60% = 60 points).

Resulting subject classification:

Grade A: minimum 93 points Grade B: minimum 85 points Grade C: minimum 77 points Grade D: minimum 69 points Rating E: minimum 61 points FX rating: less than 61 points

To enroll for an exam the student must have at least 20 points.

Forms and methods of assessment	Predetermined weight %	Area of knowledge, skills and competence
1-2 intermediate tests	20 %	Professional knowledge
presentation and active participation	10 %	Presentation skills, professional knowledge, working with
in exercises		information, ability to solve a problem independently
student portfolio	10 %	Professional knowledge, work with various information sources, self-study, ability to discuss and defend the achieved results, individual/team work
exam (test/written part + interview)	60 %	Professional knowledge - theoretical and practical written part, presentation and defense of the written part, discussion

Course outcomes:

By completing the subject Mechanics of Materials II, the student will be able to:

- apply knowledge from professional subjects of the 1st degree of higher education in an extended form and apply them to solving more complex problems,

- know and understand the basic principles of solving relationships and regularities in Flexibility and plasticity,

- derive, compile and use the necessary relationships, apply your professional knowledge to solve more complex and specific tasks of technical practice (tension and deformation of rotationally symmetric structural elements, twisting of non-circular cross-sections, geometric and material nonlinearities, loss of stability of slender rods, plasticity criteria, etc.)

- analyze the elements of machine structures stressed by axial load, twisting, bending and their combination, solve the state of tension and deformation of bodies and dimension the elements of machine structures using the theory of plasticity,

- using the acquired knowledge to apply methods and hypotheses of strength, theories of plastic creep and plastic deformations, based on the analysis of the problem to recognize the appropriateness of using individual methods, hypotheses and theories and to use them independently,

- analyze, describe, evaluate, document and defend the obtained results, create a final evaluation independently and in a team and express generalized conclusions and assess and propose the applicability of the obtained results to specific problems of technical practice.

The aim of the subject is to expand knowledge from the subject Elasticity and strength 1. The content of the subject is the presentation of the most modern theories and other methods and procedures for the analysis of elements and structures, especially from the point of view of stresses above the yield point and prediction of fatigue damage. Emphasis is placed on solving problems of technical practice and interpreting the results. The acquired knowledge can be used in all engineering disciplines and forms a strong basis for further study of mechanics and further active expansion of acquired professional knowledge.

Course scheme:

- Spatial loading of beams.
- Torsion bars of non-circular cross-section.
- Analysis of selected rotationally symmetric problems:
 - thick-walled containers,
 - rotating parts of machines and mechanisms.
- Basic equations of continuum mechanics.
- Geometric nonlinearity, kinematics of deformation motion, Green-Lagrange relations.
- Loss of stability of slender bars, basic cases of strut.
- Material non-linearity, theory of plastic creep and plastic deformation, material models, plasticity criteria.
- Permanent fatigue strength and time limited fatigue life, fatigue life criteria, design for material fatigue.

Literature:

1. Sága, M., Vaško, M., Kopas, P.: Pružnosť a pevnosť – vybrané metódy a aplikácie. VTS pri ŽU v Žiline, 2011, 400 s., ISBN 978-80-89276-34-9

2. Cúth, V., Sága, N	1., Toth, Ľ.: Pružnosť a	a pevnosť I – Príklady	. EDIS pri ŽU v Žiline	. 1999	
	čák, F., Jurica, V.: Pruž				
	lechanics of Materials				17820-5
Instruction languag	ge: english				
Notes:					
Course evaluation:					
Total number of ev	aluated students: 52				
Α	В	С	D	E	FX
21.15 %	9.62 %	17.31 %	9.62 %	42.31 %	0.00 %
Course teachers:					
Lecture: prof. Ing. I	Vilan Sága, Dr.				
Lecture: doc. Ing. N	/lilan Vaško, PhD.				
Seminar: Ing. Peter	Kopas, PhD.				
Seminar: doc. Ing. I	Milan Vaško, PhD.				
Last updated: 2022	2-08-11 09:56:11.057				
Approved by: prof.	. Ing. Milan Sága, Dr.				