University: University of Žilina				
Faculty: Faculty of Mechanical Engineer	ing			
Course ID: 2Y031	Course name: Finite Element Method II			
Course obligation: Compulsory Comple	tion: Exam			
Profile course: yes Core course: yes				
Form, extent and method of teaching a	activities:			
Number of classes per week in the	Lectures: 1 classes			
form of lectures, laboratory exercises,	Seminars: 0 classes			
seminars or clinical practice	Lab.exercises: 3 classes			
Methods by which the educational	Present form of education			
activity is delivered				
Applied educational activities and	Lectures:			
methods suitable for achieving	interpretation with the support of multimedia (systematic theoretical approach			
learning outcomes	to methods and relevant concepts, relationships and contexts in the field of			
	non-linear structural analyses, using problem-based interpretation (application			
	of the presented theory on simple and illustrative examples) with an			
	interactive approach (engagement of students in the discussion).			
	Exercises:			
	with a focus on the practical mastery of the ANSYS computer system and the			
	theoretical material covered in the lectures, supplemented by practical			
	examples demonstrating the interdependence of the solved tasks with similar			
	tasks in practice, the causes of the non-convergence of the solution discussed			
	in detail with possible ways of remedying it.			
	Students have the possibility of individual consultations with all teachers of this			
	subject.			
Number of credits: 5				

Study workload: 150 hours;

The total time required for the course is 150 hours per semester, of which 52 hours per semester are direct teaching and 98 hours per semester are reserved for independent study and independent creative activity of the student.

Recommended semester/term of study: winter, 2. year

Study degree: 2

Required subsidiary courses:

Prerequisites:

Co-requisites:

Course requirements:

Continuous assessment / evaluation:

During the semester, 2 semester papers will be assigned, evaluated for 20 points, the maximum number of points during the semester is 40 points. The minimum number of points for the exam is 20 points.

Final assessment /evaluation:

The exam takes place in the form of a presentation of the results of solving back problems, and the student can get a maximum of 60 points, if excellent knowledge is demonstrated during the presentation of the results on the exam, the number of 60 points can be increased during the exam, but the total number of points for the semester cannot exceed 100.

The specific method of evaluating the student's work during the semester and the exam is specified at the beginning of the semester by the subject teacher. The final evaluation of the student's study results for completing the subject - expressed by the grade - is governed by § 9 of the Study Regulations for the 1st and 2nd degree of university studies of the University of Žilina in Žilina.

The summary assessment (max. 100 points = 100%) consists of the assessment of the results of work during the semester (max. 40 points = 40%) and the assessment of the exam result (max. 60 points = 60%).

Resulting subject classification:		
Grade A: minimum 93 points		
Grade B: minimum 85 points		
Grade C: minimum 77 points		
Grade D: minimum 69 points		
Rating E: minimum 61 points		
FX rating: less than 61 points		
To enroll for an exam the student must	have at least 20 p	points.
Forms and methods of assessment	Predetermined weight %	Area of knowledge, skills and competence
1-2 intermediate tests	40 %	professional knowledge, work with Ansys, independence
exam (theoretical and practical part + interview)	60 %	professional knowledge - theoretical and practical part, presentation and defense of solved projects, discussion
Course outcomes:	•	
recognize, formulate, solve and interproproblems in practice. Based on the acquinput material data for models of nonlin future theoretical projects. He can use basis for further study of mechanics.	et problems of sta uired knowledge, near material beh	tion. After successful completion of the subject, he can atics and dynamics of a non-linear flexible body when solving which he can use, he is able to formulate requirements for avior and can apply them in technical practice, respectively. in he acquired knowledge in all engineering disciplines and create a
Course scheme:		
1. Introduction, sources of nonlinearitie		
2. Material and geometric nonlinearitie	s, examples.	
 Geometric nonlinearities, examples. Basics of nonlinear continuum mecha 	nicc	
 Basics of nonlinear continuum mecha Scales of deformations and stresses. 	anics.	
 Scales of deformations and stresses. Analysis of linear buckling and collap 	so of structuros	
7. Material models.	se of structures.	
8. Concepts of the theory of plasticity, of	riteria of plasticit	N .
9. Computational plasticity.		1.
10. Viscoelastic and viscoplastic behavio	or of materials.	
11. Modeling of hyperelastic materials.		
12. Body contact analysis.		
13. Summary of findings.		
, 0		

The contents of the exercises correspond to the lecture outline of the subject.

Literature:

Sapietová, A. – Žmindák, M. –Sága, M. –Lack, T. – Gerlici, J. – Dekýš, V.: Application of Computational and Experimental Methods in Machine Mechanics, Paerson, 2013.

Žmindák, M. – Grajciar, I.: Modelovanie a výpočty v metóde konečných prvkov. Žilina, 2003.

Madenci, E. - Guven, I.: The Finite Element Method and Applications in Engineering using ANSYS. Springer Science +Business Media, Inc. 2006.

Instruction language: english

Notes:

Course evaluation:

Total number of evaluated students: 41

Α	В	С	D	E	FX
60.98 %	2.44 %	12.20 %	21.95 %	2.44 %	0.00 %

Course teachers:
Lecture: Ing. Pavol Novák, PhD.
Lecture: prof. Ing. Milan Sága, Dr.
Laboratory: Ing. Pavol Novák, PhD.
Last updated: 2022-01-17 14:11:03.273
Approved by: prof. Ing. Milan Sága, Dr.